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In problems involving nonstationary detached flow past oscillating bodies an incident 
flow, which in the calculations plays a regularizing role in view of the fact that disturb- 
ances introduced by the body are carried away by the flow, is characteristically present. 
In many problems arising in the study of the hydrodynamic characteristics of wings and 
airfoils, however, large Strouhal numbers, when the velocity of the flow is relatively low 
and the amplitude of the oscillations and components of the velocities across the flow are 
comparatively large, must be considered. This is, as a rule, associated with the appear- 
ance of secondary detachment, which results in disagreement between the computed and experi- 
mental data. 

Because of the nonlinearity and complexity of the problem it is best to develop an 
efficient solution within the framework of the model of an ideal incompresible medium. 
The use of this approach is also supported by experimental observations with visualization 
of the flow pattern (see, for example, [i]); these observations suggest that because the 
flow past the body is strongly nonstationary inertial forces will prevail over viscous 
forces. 

This paper is devoted to a numerical investigation of the hydrodynamic characteristics 
of a solid airfoil undergoing translational oscillations with a finite amplitude in a 
motionless liquid (the Strouhal number is infinite). This author previously calculated 
the velocity field and the form of vortex wakes for this problem [2] including the conjugate 
modeling of the starting stage of formation of vortex wakes [3, 4]. Here the forces acting 
on the airfoil are calculated. The effect of the shape of the airfoil and the amplitude 
of the oscillations on the average thrust coefficient is studied. 

i. Formulation of the Problem. We shall study the nonlinear problem of detached flow 
past an airfoil oscillating in an ideal incompressible liquid. The airfoil starts to move 
from a state of rest. Flow past the airfoil occurs with detachement of the fluid from the 
smooth free and back corner edges. The detachment is modeled with the help of vortex wakes. 
The point of detachment is mobile on the front edge and fixed on the back edge, and it lies 
at the vertex of the angle. The fluid flow outside the airfoil and the vortex wakes, which 
consists of tangential discontinuities of the velocity field, is assumed to be potential 
and the velocities of the particles of fluid are assumed to be finite. 

The contour L 0 moves with the velocity U(t) in a direction making an angle 0(t) with 
the Olx I axis of the stationary Cartesian coordinate system O1xly I. The velocity field 
of the particles of fluid v(xl, yl, t) is the solution of the initial- and boundary-value prob- 
lem with the equations 

dv i Vp, div v = 0, l~OLV = 0 outside L; dt p ( i )  

with the boundary conditions 

(v -- U)n 0 f o r  (x 1, Yl) ~ Lo(t), 

[p] = O, v . n  = Vcn.n f o r  (x~, y~) ~ L~(t), L2(t), 
l i m v  = 0 fo r  (xl,  Y l ) - +  oo, ( 2 )  
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Fig. 1 

and initial conditions 

Vh=o : o, u l t=o  : o, L[ t=o  : Loh=o. ( 3 )  

here L l and L 2 are the contours of the wakes; L = L 0 + L I + L2; n and no are unit vectors 
normal to the countours L and L0; Vw is the velocity of a point in the wake; XiM and YIM 
are the coordinates of the sharp edge s point M); x1~ and g1~ are the coordinates of 
the point of detachment M on the smooth edge (Fig. i). 

The boundary conditions (2) express, respectively, the condition that the fluid 
cannot flow through the contour L 0, the condition that the pressure p and the velocity 
component normal to the wake are continuous across the contour L I + L2, the condition 
that velocity field decay at infinity, and the condition that the velocity of the fluid 
is finite at the point of detachment. The conditions (3) express the fact that the motion 
starts from a state of rest and the wakes appear at the moment the motion starts. The last 
requirement is based on the experimental data of [i] on visualization of flow past a wing 
undergoing translational oscillations with a finite amplitude in a motionless liquid. 

We shall study only those solutions of the problem (1)-(3) which belong to the class 
of functions which assume finite values at the point of detachment and near the ends of 
the wakes. The velocity of the flow U(t) past the airfoil is assumed to vary in time har- 
monically, and the phase of the oscillations is such that IU(0)[ ~ 0. 

The initial- and boundary-value problem (1)-(3) reduces [5] to a Cauchy problem for 
the integrodifferential equations 

(a.j/~t) (t, r]) = ~ ( t ,  ~l(t, PJ ,  ~2(t, P2)),] = t,2; (4) 

(5) 

where t is the time, j is the wake number, Fj is the circulation at a point in the Vortex 
wake measured from its free end; ~ and ~ are the complex coordinates of the points of 
detachment of the vortex wakes Qj0 is the half-sum of the limiting values of the complex 
velocity of the particles of fluid as they approach the contour of discontinuity from the 
left and right. The complex plane z = x + iy is introduced here with the help of the coor- 
dinate system Oxy (see Fig. i) fixed on the profile; the axes of the system Oxy are parallel 
to the axes of the stationary system Olxly I. 

The problem (1)-(3) is reduced to the problem (4) and (5) by solving at each moment 
in time a boundary-value problem of the Riemann-Hilbert type [6] in which one seeks a complex 
velocity function which is analytic outside the contours of the airfoil and the wakes, has 
a fixed jump on the lines of discontinuity, satisfies the condition of impermeability on 
the air foil, the kinematic and dynamic conditions on the vortex wakes, and Thompson's 
theorem (expressing the fact that the circulation of the velocity along a contour in the 
fluid that encompasses the airfoil, and the contours of discontinuity vanishes), and decays 
at infinity and is everywhere finite. The solution of this boundary-value problem is given 
by the formula [6] 
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if the conformal mapping w = w (z) of t_he flow region into the region outside a circle of 
radius R (see Fig. i) is known. Here V is the complex vel~city of the particles of fluid in 
the z-plane in the coordinate system tied to the profile; U is the complex velocity of the 
fluid at infinity in the same system; and, Wp is the complex coordinate of the center P 
of the circle K 0 in the w-plane. 

2. Computational Scheme. A detailed algorithm for solving the problem posed is 
studied in [2], so that we shall indicate the sequence of solution only schematically. The 
Cauchy problem (4) and (5) was solved numerically by modeling the wakes by a system of 
dicrete vortices. A family of contours which are obtained from circles (see Fig. i) with 
the help of the Karman-Trefftz mapping 

z # ~ a  t ~ ) '  6 ~ = 2 - - ~ i  (7 )  

was chosen for the airfoils in the flow. The value of a determines the chord of the airfoil, 
the parameter 6 gives the angle on the back edge, 0 < 6 < ~/2, d characterizes the thickness 
of the airfoil, and the parameter h characterizes the curvature. It was assumed that the 
airfoil undergoes translational oscillations along the Oly I axis according to the harmonic 
law Yl = A cos(~t ~ ~) with the frequency of oscillations m and the amplitude A. To ensure 
that the motion starts smoothly it was assumed that the phase of the oscillations D is equal 
to zero. The calculation of the displacement of points of the vortex wake (discrete vortices) 
at each moment in time was performed by Euler's scheme with the help of the formula for 
the velocity (6), in which with w = ~ an integral of the Cauchy type exists in the principle- 
value sense. The convergence of the integrals on the right side of (6) at the singular 
points - the points of shedding of the wakes - follows from the behavior of the intensity 
of the vortex wake near the edge [3] and from the fact that the curvature of the vortex 
wake at the point of detachment is equal to the curvature of the airfoil past which the 
fluid flows [4]. This relation requires that the coordinates and intensity of the shed vor- 
tices be calculated accurately. 
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The shedding of vorticity from the front smooth edge was calculated according to the 
following scheme. Euler's equations and the conditions on the sheet give the following 
relation: 

d~,dt ' = 'Y*- 0-~z 12 [ 2 u R - l c ~  (O*' - -  0 ) - - F ,  - -  ~#I]T' 

- [ , --  y ,  l~e i exp (i0") az~_ j [2U sin (0" - -  0) i -  F2 + F2], 

f ~ 2 9 i 2% % -c I~-1% ( ~  § o~) dry, F 2 -- 2~ ~- 

K 1 

(8) 

N 

which is valid for the point of shedding. In [4] it is presented for w(z) = z. Here 7, is 
the intensity of the vortex wake L 2 at the point of shedding; 0* is the angular coordinate 
of the point of shedding in the plane w; 9 is the angle of attack; F I and F2are the integrals 
F I and F 2 which the abscissa and ordinate 01 , o 2 of the coordinate system whose origin 
lies at the point M must be ~eplaced with oi, o2 (see Fig. i) , while the intensity F I must 
be replaced with F 2. With the help of (8) the intensity of the vortex wake ~, ab the time 
t + At was determined from the formula ?,(t ~ At) = y,(t) ~%r,'(t~A*, ~. The intensity of the 
next vortex F(tq- At)~ --y~Iy,[At/2, shed from the circular edge, was calculated from the 

intensity y... found, and its abscissa ~i = Y,[Ow/OzlAt/2 was calculated in the moving coordinate 
system N%% (in the plane of the conformal mapping). The other coordinate 0 2 of this vortex was 
calculated taking into account the local form of the vortex wake in a neighborhood of the 
point of shedding [5] with the help of the equation 

~2 

%~ 2R% ~' ~(t  ' ( 9 )  

The coefficient %(t + At) was determined from the position of the next to last vortex. 

The position of the point of detachment at each moment in time was found from the 
formula 0*(t-~ At) = 0*(t)-5 0*'(t)At with the help of the expression for the angular velocity 
in the form presented in [4]: 

0,' = - R-* ~, ~a~ = 2u (0, - 0) + F2 + 7'~ ~ '. (i0) 

The formulas (8)-(i0) are the basic formulas for calculating the shedding of vorticity from 
the smooth front edge. 

The parameters of a vortex shed at each step in time from the corner edge were calcu- 
lated through the intensity of the vortex wake at the point of shedding y,(t ~ At) using 
the formulas F(t + At) =--y,[y,[At/2, s I = ]y,[At/2 . The second coordinate of the vortex was 
found with the help of the equation for the local form of the vortex wake r~ear the point 
of shedding s 2 = s this equation is derived analogously to Eq. (9) in [5]. The next 
value of the coefficient was determined, as in the case of the smooth edge, from the posi- 
tion of the next-to-last vortex shed from the airfoil. 
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The intensity y, required for the calculations described above was calculated with the 
help of the condition at the point of shedding [3]: 

2 U s i n ( e ~ - 0 ~ ) - - t  f (  2~ -~-R-QdF~ -fs ~ k l  o~ -,- o 2 

- -  2--~- ~" ~---------7-' + R- I  dF2 = 0, 
K 2 ~ 

which expresses the fact that the component of the velocity tangent to the contour in the 
flow in the w-plane vanishes. Here 81 = arctan (h/a). It was assumed that the intensity ~ of 
the section of wake newly shed over the time At is equal to the intensity sought y,(t + At). 
The integral over this part of the contour was calculated separately taking into account 
the singularity of its kernel at the point of detachment and the shape of the sheet. 

The numerical experiments confirmed the importance of calculating the section of the 
wake near the point of detachment and the fact that this section of the wake significantly 
affects the parameters of the vorticity shed into the flow. 

An important feature of this calculation is that the starting sections of the wakes 
shed from the airfoil are modeled with the help of the explicit formulas presented in [3, 4]. 
The formulas permit constructing approximately, based on the size of the chosen starting 
time step, both vortex wakes shed from the front and back edges of the airfoil. The attention 
that must be devoted to modeling the starting stage of formation of the wakes is explained 
by the fact that in problems involving flow past a body which are close to linear (for ex- 
ample, translational motion of a thin, slightly bent airfoil under a small angle of attack) 
the starting parameters of the vortex wake can be chosen owing to the comparatively small 
number of starting parameters of the problem. In addition, the starting parameters them- 
selves do not affect very significantly the developed regime of flow past the body. If, 
however, the number of geometric parameters of the airfoil and parameters in the law of 
motion of the airfoil is large, then the arbitrariness (choice) in giving the starting vortic- 
ity turns out to be a serious obstacle in performing systematic calculations for the purpose 
of determining the dependences of the hydrodynamic characteristics on the shape and law 
of motion of the airfoil. 

The forces acting on the airfoil were calculated by integrating the pressure field 
on its contour. The pressure is determined by the Cauchy-Lagrange integral, which in the 
case of translational motion of the airfoil can be reduced, using a moving coordinate system 
tied to the airfoil, to the form [7] P ~ --9{~t -i- (I/2)IVi 2 -- (L'2)[U] ~} ~ F(t), where !VI is the 
modulus of the velocity in the moving coordinate system of a particle of fluid, located 
at the given moment t at the chosen point on the airfoil; ~t is the time derivative of the 
potential of the absolute motion of the fluid in the moving coordinate system; and F(t) 
is an arbitrary function of time. The calculation of IVI 2 at the points of the 
airfoil is performed using the same procedures employed to calculate the velocity 
field. Different variants are posslble for finding ~t- The potential ~ is the real part of 
the complex potential of the absolute motion, which for a given distribution of vorticity 
and position of the airfoil can be calculated exactly by integrating the formula (6) along 
z and transferring to absolute motion. The derivative ~t is then found using the approximate 
formula % ~ (~(t ~ At)--~(t))/At. In the numerical implementation, however, this method 
requires calculation of a large number of logarithms (for each point-like vortex), which 
appear as a result of the integration of the kernel of the integral in (6), at each moment 
in time, and this substantially increases the computing time. 

Another method, which does not suffer from this drawback, consists of differentiating 
the potential of the absolute pressure, found by integrating (6) and written for discrete 
vortices, exactly with respect to time (in the moving coordinate system). In this case 
the differentiation of the logarithmic kernels of the integrals leads to expressions which 
are rational functions of their arguments, and the intensity of the discrete vortices does 
not depend on the time. The described method for finding the pressures makes it possible 
to use an exact formula for calculating the potential and at the same time reduce the com- 
puting time. 
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3. Computational Results. In the calculations the form and intensity of the vortex 
were studied with different values of the geometric characteristics of the airfoil (7) and 
amplitude of the oscillations. The data from the kinematic picture of the flow, compared 
with the experiments on visualization [i], are presented in detail in [2] and partially 
in Fig. 2. In addition, the effect of the same parameters on the hydrodynamic reactions 
on the airfoil and the power expended was studied. T~e dependences of the average thrust 
coefficient on the thicknening of the airfoil and the amplitude were obtained. 

Figure 3 shows graphs of the behavior of the forces as a function of time. The coeffi- 
cients of the normal force F N and the thrust force F t were calculated using the formulas 

=97 C N ~[Nj(~(o)b)'b), Ct ~ 2ft (p(0)b)~b) ,(~ is the circular frequency of the oscillations of the 
profile and b is the chord). The curves are presented for an amplitude equal to one-fourth 
the chord length. The periodic regime is established after two to three periods of the oscil- 
lations. The difference of the forces in the first and second periods from their 
values at long times indicates that the formation of vortex wakes significantly affects 
the formation of hydrodynamic forces. The shift in the phases of the graphs of the normal 
force and the thrust force relative to the law of oscillation should also be noted. The 
presence of a shift is explained by the fact that the sign of the shed vorticity changes 
before the airfoil occupies the extreme position [2]. The magnitude of the shift depends 
on the shape of the airfoil and the law of oscillation. 

Investigation of the effect of the solidness of the airfoil on the hydrodynamic char- 
acteristics showed that in the range of thickenings approximately fro_m 16 to 26% of the value 
of the thrust coefficient average over a period of the oscillations C t is an approximately 
linear function of the relative thickness of the profile 2Ymax/b (Fig. 4). At the same time 
in the range of thickenings studied the changes in the power expended and the period-averaged 
modulus of the normal force do not exceed !10% (the minimum of the expended power was reached 
on a 16% airfoil for an amplitude to chord ratio of 0.25 and an edge angle of 0.i~). Increas 
ing the angle on the back edge reduced the thrust force with virtually no change in the 
normal force and the power expended. 

The graph in Fig. 5 shows the obtained quantitative dependence of the average thrust 
coefficient C t on the ampiitude of the oscillations for an 18% symmetric airfoil with an 
angle of 0.1z at the back edge. Two nearly linear sections, one of which corresponds to 
oscillation amplitudes up to 0.3 of the chord and the other from 0.35 to 0.5 chords, are 
characteristically present. The power expended increases as the amplitude increases more 
rapidly than does the thrust force. 

In conclusion we shall present the results of a comparison of the calculations of 
the hydrodynamic forces with existing experimental data for translational oscillations of 
a wing in the mooring regime [8]. The experiment showed that thin wings with a translational 
oscillation law do not create a thrust force (7% profile TsAGI KV-I-7), while the thrust 
force for thick wings can be significant [for a 15% profile NASA-0015 the average thrust 
coefficient, calculated using the formula Ct ~ 2Ft/(@(~A)~b)(A is the amplitude of the oscil- 
lations), assume the values 0.34-0.4]. The results of these calculations (Fig. 4) indicate 
that the average thrust force vanishes as the thickness of the profile decreases to 10%. 
Calculations for 15% Karman-Trefftz profiles, approximately corresponding to the NASA-0015 
profile, gave C t = 0.35-0.47 with the same oscillation amplitude as that employed in the 
experiment. 

LITERATURE CITED 

I. Y. Oshima and K. Oshima, "Vortical flow behind an oscillating airfoil," Proceedings 
of the 15th International Congress on Theor. and Appl. Mech., Toronto, 1980, Postprints, 
Amsterdam (1980). 

2. A. I. Zobnin, "Calculation of detached flow around a solid airfoil oscillating in a 
motionless liquid," Omsk (1987); VINITI, January 27, 1987, No. 626-V87.. 

3. A. I. Zobnin, "Initial detached flow past an airfoil with a corner edge," Omsk (1985); 
VINITI, June 24, 1985, No. 4462. 

4. A. I. Zobnin, "Study of the initial stage of detached flow past a circular cylinder," 
Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1983). 

5. S. K. Betyaev, "Evolution of vortex sheets" in: Dynamics of a Continuous Medium with 
Free Surfaces [in Russian], Chuvash University, Cheboksary (1980). 

6. N. I. Muskhelishvili, Singular Integral Equations [in Russian], Nauka, Moscow (1968). 
7. V. A. Golovkin, "Nonlinear problem of nonstationary flow past an arbitrary airfoil with 

freely deforming wake," Uchen. Zap. TsAGI, ~, No. 3 (1972). 

742 



8. E. P. Grebeshov and O. A. Sagoyan, "Hydrodynamic characteristics of an oscillating ring 
performing the function of a carrying element and mover," Tr. TsAGI, No. 1725 (1976). 

USE OF HYDRAULIC RESONANCE IN A PIPELINE WITH A GAS CAVITY TO 

CREATE A NONSTATIONARY JET 

S. P. Aktershev and A. V. Fedorov UDC 532.512 

High-velocity jets of liquid are widely employed in engineering for breaking down and 
cutting different materials. In some cases a steady jet is employed, but the results of 
[I] show that it is better to employ a nonstationary jet, because in this case the main 
mechanism of erosion of material is the high pressure of the hydraulic impact of the jet. 
In [2] several aspects of the creation of a nonstationary jet, emanating from a nozzle at 
the end of a pipe, are studied in application to hydraulic extraction of useful minerals. 
The oscillatory process in a pipe entirely filled with liquid is studied by the method of 
mathematical modeling. The nonstationary state of the jet was created either by pulsating 
the flow rate of the liquid at the pipe inlet or by periodically changingthe cross section 
of the jet with the help of an oscillating valve. 

It is well known that the presence of an air cavity in a liquid-filled pipe could give 
rise to significant oscillations of the velocity and pressure of the liquid in different 
nonstationary processes [3-7]. This is explained by the appearance of characteristic oscil- 
lations of a column of liquid with a frequency which is determined simultaneously by the 
parameters of the cavity, the liquid, and the pipe [8, 9]. Pressure oscillations during 
transient processes in a pipe are usually regarded as an undesirable phenomenon, so that 
the parameters of the air chamber are chosen so as to dampen these oscillations. At the 
same time there exist hydroimpact systems in which the oscillations of the liquid in a pipe 
without a gas cavity are specially created with the help of a valve which is periodically 
covered in order to obtain pressure pulses [i0]. Since the presence of a gas cavity in 
a pipe containing liquid can lead to a significant increase in pressure [6, 7] this effect 
could be useful in obtaining high pressures, as pointed out in [7]. 

Physical-Mathematical Formulation of the Problem. In this paper we shall study the 
possibility of employing resonance oscillations of a liquid in a pipe with a gas cavity 
and a nozzle at the end (Fig. i) to create a high-velocity pulsating jet. It is assumed 
that the oscillations arise as a result of modulation of the pressure Pin(t), which varies 

N 

according to the law Pin(t) = P0 ~ A~cos (2~7,~'T), at the pipe inlet. Here P0 is the sta- 
tionary pressure in the system, and Ap and T are the amplitude and period of the pulsation 
arising during pump operation. We shall study the problem in the approximation of an in- 
compressible liquid, making the assumption that the velocity of the liquid is identical 
in all sections of the pipe. Neglecting the propagation time of the disturbances along 
the pipe in this manner will be justified if ~T >> L (L and g are the length of the pipe 
and the velocity of propagation of the wave). We shall write the equations of motion of 
the liquid, the change in the volume of the gas cavity, and the adiabatic compression of 
the gas in the form 

pLd~/dT =. Pin-- P -  s (1) 
dV/d~= -- ~ d- ~ V 2  (p -- Pa)/P, PV ? = poV~, 

where ~, ~, and ~ are the velocity, density, and pressure of the liquid at the end of the 
pipe; f0 and s0 are the cross-sectional area of the pipe and the effective area of the noz- 

zle; V2(p--pa)/9 is the velocity of the jet; Pa is the atmospheric pressure; X is the 

coefficient of friction at the wall; D is the diameter of the pipe; and, y is the adiabatic 
index. 
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